Kupfer und Kupferlegierungen Drähte zur allgemeinen Verwendung Deutsche Fassung EN 12166 : 1998 DIN EN 12166

ICS 77,150,30

Deskriptoren: Kupfer, Kupferlegierung, Draht

Copper and copper alloys - Wire for general purposes;

German version EN 12166: 1998

Cuivre et alliages de cuivre - Fils pour usages géneraux:

Version allemande EN 12166: 1998

Ersatz für DIN 1757 : 1974-06, DIN 17677-1 : 1983-12, DIN 17677-2 : 1974-06 und DIN 17682 : 1979-08:

teilweiser Ersatz für DIN 2076 : 1984-12

Die Europäische Norm EN 12166: 1998 hat den Status einer Deutschen Norm.

Nationales Vorwort

Diese Europäische Norm EN 12166 : 1998 ist im Technischen Komitee TC 133 "Kupfer und Kupferlegierungen" (Sekretariat: Deutschland) des Europäischen Komitees für Normung (CEN) erarbeitet worden.

Das zuständige deutsche Normungsgremium ist der Arbeitsausschuß FNNE-AA 3.4 "Stangen, Drähte und Profile" des Normenausschusses Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e. V.

Anforderungen an Produkte für die Anwendung in der Elektrotechnik wurden nicht aufgenommen. Diese sind Gegenstand der separaten Europäischen Normen (WI: 00133024 und WI: 00133025), die zu einem späteren Zeitpunkt veröffentlicht werden.

Änderungen

Gegenüber DIN 1757: 1974-06, DIN 2076: 1984-12, DIN 17677-1: 1983-12, DIN 17677-2: 1974-06 und DIN 17682: 1979-08 wurden folgende wesentliche Änderungen vorgenommen:

- a) Werkstoffkurzzeichen teilweise geändert (siehe Tabelle).
- b) Werkstoffnummern vollständig nach dem Europäischen Werkstoffnummernsystem für Kupfer und Kupferlegierungen nach EN 1412 geändert (siehe Tabelle).
- c) Werkstoffe gestrichen und neue hinzugefügt (siehe Tabelle).
- d) Zusammensetzungen der Werkstoffe teilweise geringfügig geändert.
- e) Kennzeichnung der Werkstoffzustände nach EN 1173 geändert.
- f) Werte für die mechanischen Eigenschaften teilweise geringfügig geändert.
- g) Für die Bezeichnung der im Zugversuch ermittelten Kennwerte Bezeichnungen nach EN 10002-1 aufgenommen.
- h) Für die Mindestwerte der Bruchdehnung zusätzlich gegenüber DIN 17677 A (A_s) aufgenommen.
- i) Bereiche und Werte für die Grenzabmaße für die Durchmesser von Runddraht und Schlüsselweiten von Vierkant- und regelmäßigen Vielkantdrähten teilweise oder ganz geändert. Unterteilung nach Werkstoffgruppen nicht vorgenommen, sondern nach werkstoffunabhängigen Klassen. Für die Grenzabmaße für Breite und Dicke für Rechteckdrähte nur eine Unterteilung nach Dicken und Breiten vorgenommen. Bei Vierkant- und Rechteckdrähten scharfkantige und Drähte mit gerundeten Kanten unterschieden und Angaben zu maximal zulässigen Radien aufgenommen.

Frühere Ausgaben

DIN 1757: 1925-07, 1967-02, 1974-06; DIN 17677-1: 1974-06, 1983-12; DIN 17677-2: 1974-06; DIN 17682: 1966-09, 1979-08; DIN 2076: 1944-02, 1964-03, 1984-12

Fortsetzung Seite 2 und 3 und 36 Seiten EN

Normenausschuß Nichteisenmetalle (FNNE) im DIN Deutsches Institut für Normung e. V.

Seite 2

DIN EN 12166: 1998-04

Tabelle: Gegenüberstellung der neuen Werkstoffbezeichnungen nach DIN EN 12166 zu den früheren Werkstoffbezeichnungen nach DIN 17677-1 : 1983-12 und DIN 17682 : 1979-08

Werkstoffb DIN EN 12166		DIN 17677-1 : 1983-12 DIN 17682 : 1979-08	
Kurzzeichen	Nummer	Kurzzeichen	Nummer
Cu-DHP	CW024A	SF-Cu	2.0090
CuBe2	CW101C	CuBe2	2.1247
CuBe2Pb	CW102C	-	
CuCo1Ni1Be	CW103C	-	
CuCo2Be	CW104C	CuCo2Be	2.1285
CuCr1Zr	CW106C	_	-
CuNi1Si	CW109C	-	_
CuNi2Be	CW110C	-	_
CuNi2Si	CW111C	-	_
CuSi1	CW115C	-	-
CuSi3Mn1	CW116C	-	_
CuTeP	CW118C	-	_
CuZr	CW120C	-	_
CuNi7Zn39Pb3Mn2	CW400J	-	_
CuNi10Zn27	CW401J	-	_
CuNi10Zn42Pb2	CW402J	-	
CuNi12Zn24	CW403J	CuNi12Zn24	2.0730
CuNi12Zn30Pb1	CW406J	-	_
CuNi18Zn19Pb1	CW408J	-	_
CuNi18Zn20	CW409J	CuNi18Zn20	2.0740
CuSn4	CW450K	_	-
CuSn5	CW451K	-	_
CuSn6	CW452K	CuSn6	2.1020
CuSn8	CW453K	CuSn8	2.1030
CuZn10	CW501L	-	_
CuZn15	CW502L	CuZn15	2.0240
CuZn20	CW503L	CuZn20	2.0250
CuZn30	CW505L	CuZn30	2.0265
CuZn36	CW507L	CuZn36	2.0335
CuZn37	CW508L	CuZn37	2.0321
-	_	CuZn40	2.0360
CuZn35Pb1	CW600N	CuZn36Pb1,5 ¹)	2.0331 ¹)
CuZn35Pb2	CW601N	CuZn36Pb1,5 ¹)	2.0331 ¹)
CuZn36Pb3	CW603N	CuZn36Pb3	2.0375
CuZn37Pb2	CW606N	-	-

Seite 3

DIN EN 12166: 1998-04

Tabelle (abgeschlossen)

Werkstoffbezeichnung					
DIN EN 12166		DIN 17677-1 : 1983-12 DIN 17682 : 1979-08			
Kurzzeichen	Nummer	Kurzzeichen	Nummer		
-	_	CuZn38Pb1,5	2.0371		
CuZn38Pb2	CW608N	_	-		
CuZn38Pb4	CW609N	' -	-		
CuZn39Pb0,5	CW610N	-	_		
CuZn39Pb2	CW612N	CuZn39Pb2	2.0380		
CuZn39Pb3	CW614N	CuZn39Pb3	2.0401		
CuZn40Pb2	CW617N	_	-		
CuZn19Sn	CW701R	-	-		
CuZn36Sn1Pb	CW712R	-	-		
CuZn37Pb1Sn1	CW714R	_	-		
CuZn40Mn1Pb1	CW720R	_			

¹) Der Werkstoff CuZn36Pb1,5/2.0331 (Pb: 0,7 % bis 2,5 %) wurde durch den Werkstoff CuZn35Pb1/CW600N (Pb: 0,8 % bis 1,6 %) und den Werkstoff CuZn35Pb2/CW601N (Pb: 1,6 % bis 2,5 %) ersetzt.